Ученые ТПУ выращивают на титановых имплантатах нанотрубки для защиты костей от разрушения и транспортировки лекарств в организм

| 1565

Ученые Томского политехнического университета и их зарубежные коллеги синтезируют на поверхности титановых имплантатов нанотрубки из диоксида титана, на которые наносят кальций-фосфатные покрытия, идентичные по своему составу человеческой кости. Благодаря таким покрытиям, во-первых, можно будет улучшить приживаемость костных имплантатов — нанотрубки за счет высоких значений удельной площади поверхности снизят нагрузку на имплантат, возникающую, когда человек двигается. А, во-вторых, в них можно будет загружать еще и различные лекарственные вещества, которые будут поступать в организм пациента, помогая ему бороться с теми или иными заболеваниями. 

На фото: Екатерина Чудинова, аспирант Романа Сурменева 

Исследование проводят ученые Инженерной школы ядерных технологий и Инженерной школы новых производственных технологий Томского политеха совместно с ведущими экспертами в области медицинского материаловедения из Университета Дуйсбург (Германия), Технологического института Карлсруэ (КИТ, Германия), Калифорнийского университета Риверсайда (США). 

Как отмечают авторы разработки, титан сегодня широко используется для изготовления имплантатов, но он значительно тверже костной ткани из-за разных значений упругости. При движении пациента титан забирает на себя больше механической нагрузки, чем кости, что может привести к разрушению костной ткани.

«Нанотрубки позволяют решить эту проблему. Они как будто растут на поверхности имплантата ровным слоем, это своеобразная граница между костью и титаном. Нанотрубки просто не позволяют титану взять на себя больше механической нагрузки, чем костная ткань. Кроме того, титан биоинертен, он слабо взаимодействует с биологическими структурами и жидкостями. Чтобы он лучше приживался, его поверхность нужно изменять. Для этого мы покрываем нанотрубки различными покрытиями, которые “маскируют” имплантат под костную ткань, и он приживается быстрее», — рассказывает аспирант Инженерной школы ядерных технологий ТПУ Роман Чернозем.

Нанотрубки представляют собой полые цилиндры из диоксида титана длиной от нескольких десятков нанометров до 8-10 микрометров. Они равномерным слоем покрывают поверхность титанового имплантата. Также их можно синтезировать и на поверхностях других сплавов.

Чтобы организм пациента не отторгал модифицированные имплантаты, нанотрубки делают идентичными по своему составу человеческой кости, нанося на них покрытия из кальций-фосфата или гидроксиапатита. Кальций и фосфор, входящие в состав кальций-фосфата, — основа неорганической фазы костной ткани. Гидроксиапатит, тоже относящийся к классу кальций-фосфатов, является основной минеральной составляющей костей и зубов.

Покрытия наносятся на нанотрубки методом высокочастотного магнетронного распыления. «Мишень», материал-основу для роста покрытия, бомбардируют ионы инертного газа и буквально выбивают из нее необходимые ионы, атомы и так далее, которые осаждаются тонким слоем на поверхности нанотрубок. Благодаря этому, покрытия обладают высокой адгезионной прочностью, то есть прочнее присоединяются к титану.

Фото: SEM-изображения нанотрубок из диоксида титана, покрытых кальций-фосфатом

Добавим, аспиранту ТПУ Роману Чернозему первым в России удалось повторить эксперимент британских коллег и нанести на нанотрубки методом высокочастотного магнетронного распыления покрытие из гидроксиапатита. Кроме этого, проведя исследование, ученые ТПУ и их коллеги впервые установили, что на нанотрубках с меньшим диаметром (менее 100 нанометров) формируются покрытия на основе гидроксиапатита, а если их диаметр при тех же условиях увеличить — образуется уже кальций-фосфатное покрытие.

Это открытие позволит в будущем применять нанотрубки в различных медицинских целях. Например, для доставки лекарств в организм пациента — нанотрубки полые внутри и идеально подходят для того, чтобы загружать в них лекарственные вещества, доставляя их в нужный участок организма вместе с имплантатом.

«Нанотрубки позволяют контролировать скорость доставки лекарственных средств в организм пациента. Если они покрыты аморфным кальций-фосфатом, такое покрытие растворяется и выпускает лекарство в организм быстрее — от недели до месяца. Но есть случаи, когда нужен пролонгированный эффект — например, чтобы лекарство постепенно поступало в организм в течение года. Тогда на нанотрубки диоксида титана можно наносить покрытия из гидроксиапатита, состав которого представляет собой структурно упорядоченные элементы. В таком случае скорость растворения покрытия станет ниже. В перспективе эта технология позволит подходить к лечению и реабилитации каждого пациента более персонифицировано, подбирая именно тот тип нанотрубок для имплантатов, который нужен в каждом конкретном случае», — объясняет научный руководитель проекта, начальник Центра технологий ТПУ Роман Сурменев.

Подробнее об исследовании можно прочитать в научной статье, опубликованной в журнале Applied Surface Science (IF 3, 387; Q1).

Справка:

ТПУ — участник Проекта 5-100, ключевым результатом которого должно стать появление в России к 2020-му году современных университетов-лидеров с эффективной структурой управления и международной академической репутацией, способных задавать тенденции развития мирового высшего образования.