Ученые ТПУ разрабатывают основы технологии для получения перспективных типов ядерного топлива

| 549

Ученые Инженерной школы ядерных технологий Томского политехнического университета разрабатывают научные основы технологии плазмохимического синтеза наноразмерных сложных оксидных композиций для перспективных типов ядерного топлива. Политехники предлагают способ быстро и экономично получать большое количество качественного ядерного топлива для создаваемых ядерных реакторов на быстрых нейтронах. Сегодня проект реализуется в рамках гранта Российского научного фонда.

Фото: Пример ядерного реактора на быстрых нейтронах БН-800

Значительную часть ядерной энергетики в 21 веке еще будут составлять атомные электростанции, использующие керамическое ядерное топливо (ЯТ) из диоксида урана, обогащенного по изотопу уран-235. Помимо неоспоримых достоинств у такого топлива есть и существенные недостатки. К примеру, низкая теплопроводность, которая ограничивает удельную мощность реактора по температуре плавления; хрупкость и склонность к растрескиванию — это может вывести топливо из строя; короткий цикл использования — до трех-пяти лет; невозможность создания энергетических установок сверхмалой (до 10МВт) и малой (10–100 МВт) мощности; большие расходы на утилизацию отработавшего топлива и, что немаловажно, — ограниченный ресурс изотопа уран-235. Все это в последние годы стало причиной замедления развития атомной энергетики, а некоторые страны и вовсе от нее отказались.

Поэтому ученые ТПУ — под научным руководством заведующего лаборатории изотопного анализа и технологий отделения ядерно-топливного цикла, профессора Игоря Шаманина — предлагают использовать в составе ЯТ изотопы уран-238, торий-232 и плутоний-239. Благодаря им отпадает необходимость в дорогостоящем изотопном обогащении, а цикл использования такого топлива может быть доведен до 10–15 лет. При этом прогнозных запасов тория в земной коре в три-пять раз больше, чем урана, а использование керамического ЯТ из оксидных композиций на основе тория даст возможность создания сверхмалых и малых энергетических установок для использования в удаленных и труднодоступных регионах, на рудниках и карьерах. Но это далеко не все, что придумали политехники.

«Коэффициент использования урана очень низкий — в процессе работы реактора только незначительная его часть в виде изотопа уран-235 выгорает, а остальное — в виде урана-238 и продуктов деления — уходит на хранение. Но поскольку в России месторождений урана очень мало, возникла идея, что остатки из отработавшего топлива (уран-238) можно использовать для создания нового.

Кроме того, в реакторе всегда нарабатывается плутоний-239, который также можно извлекать и использовать вместо урана-235. Тем не менее это все равно останется керамическим ядерным топливом со всеми его недостатками, но его можно усовершенствовать», — рассказывает доцент отделения ядерно-топливного цикла ТПУ Александр Каренгин.

По его словам, одним из перспективных направлений дальнейшего развития ядерной энергетики является использование дисперсионного ЯТ, в котором включения из делящихся материалов (уран, торий, плутоний) в виде оксидных композиций размещают в матрице, имеющей высокий коэффициент теплопроводности и низкое сечение резонансного поглощения нейтронов.

Применение матрицы из порошков металлов (алюминий, молибден, вольфрам и другие) увеличивает коэффициент теплопроводности, но приводит к ухудшению нейтронного баланса из-за резонансного поглощения нейтронов. К тому же использование металлов в качестве матрицы чрезвычайно дорого, поэтому политехники предложили использовать в качестве нее оксиды тугоплавких металлов, например оксид магния, который широко используется в теплонагревательных элементах.

Однако применение внешнего гелеобразования (золь-гель процесса) для получения из смешанных водных нитратных растворов (ВНР) оксидных композиций сопряжено со следующими недостатками: многостадийность, продолжительность, низкая производительность, необходимость использования химических реагентов, дополнительное водородное восстановление, высокая себестоимость. К несомненным преимуществам применения плазмы для плазмохимического синтеза оксидных композиций из диспергированных смешанных растворов ВНР по сравнению с золь-гель процессом и технологией, основанной на раздельном получении и механическом смешении оксидов металлов, следует отнести: одностадийность, высокую скорость, возможность активно влиять на размер и морфологию частиц, компактность технологического оборудования. Однако плазменная переработка только смешанных растворов ВНР требует огромных энергозатрат (до 4 МВт·ч/т) и не позволяет получать в одну стадию оксидные композиции требуемого стехиометрического состава без дополнительного водородного восстановления.

Впервые предложен прямой плазмохимический синтез в воздушно-плазменном потоке оксидных композиций из диспергированных горючих водно-органических нитратных растворов (ВОНР), включающих органический компонент (спирты, кетоны и другие) и имеющих низшую теплотворную способность не менее 8,4 МДж/кг. 

Плазменная обработка таких растворов приведет к существенному снижению удельных энергозатрат на их переработку (с 4,0 до 0,1 МВт·ч/т), позволит значительно увеличить производительность плазменных установок, а также обеспечит условия в плазмохимическом реакторе установки для прямого синтеза в воздушной плазме наноразмерных сложных оксидных композиций, имеющих гомогенное распределение фаз, высокую теплопроводность, а также требуемый стехиометрический состав без дополнительного водородного восстановления.

«Также впервые мы предлагаем применить после плазмохимического реактора охлаждение — закалку — в центробежно-барботажных аппаратах продуктов плазмохимического синтеза. Таким образом, можно будет управлять физико-химическими и технологическими свойствами получаемых порошков сложных оксидных композиций, — подчеркивает политехник. — Установка потребляет от сети 100 кВт электрической мощности и выдает через высокочастотный факельный плазмотрон 60 кВт в виде воздушно-плазменной струи. Этой мощности достаточно для переработки 1000 л/ч раствора ВОНР вместо 10 л/ч раствора ВНР. Получается, что при той же самой потребляемой электрической мощности можем поднять производительность установки в 10 раз, — отмечает Александр Каренгин. — Кроме того, когда мы перерабатываем растворы ВОНР, в реакторе установки с каждой тонны вырабатывается много тепловой энергии, которую мы можем использовать для технологических и бытовых нужд.

Допустим что мы тратим 100 кВт электрической мощности на тонну раствора ВОНР — это условно 300 рублей по затратам электроэнергии, — и получаем примерно 2,0 МВт ч/т (1,7 Гкал/т) тепловой энергии. Исходя из стоимости 500 рублей за 1 Гкал мы на выходе получаем около 800 рублей, то есть остаемся в плюсе — 500 рублей с каждой тонны — это фантастика! Безусловно, наш подход очень перспективный».

По словам Александра Каренгина, результаты проведенных исследований в ТПУ на модельных растворах ВОНР будут использованы для создания и промышленного освоения энергоэффективной технологии крупнотоннажного плазмохимического синтеза наноразмерных оксидных композиций для перспективных типов ядерного топлива, например дисперсионного, REMIX, MOX и др. Это позволит развернуть промышленное производство конкурентоспособного ядерного топлива и его поставку на действующие в России и за рубежом атомные электростанции.